Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mol Ther Nucleic Acids ; 31: 731-743, 2023 Mar 14.
Article in English | MEDLINE | ID: covidwho-2244298

ABSTRACT

The spread of COVID-19 has affected billions of people across the globe, and the diagnosis of viral infection still needs improvement. Because of high immunogenicity and abundant expression during viral infection, SARS-CoV-2 nucleocapsid (N) protein could be an important diagnostic marker. This study aimed to develop a label-free optical aptasensor fabricated with a novel single-stranded DNA aptamer to detect the N protein. The N-binding aptamers selected using asymmetric-emulsion PCR-SELEX and their binding affinity and cross-reactivity were characterized by biolayer interferometry. The tNSP3 aptamer (44 nt) was identified to bind the N protein of wild type and Delta and Omicron variants with high affinity (KD in the range of 0.6-3.5 nM). Utilizing tNSP3 to detect the N protein spiked in human saliva evinced the potential of this aptamer with a limit of detection of 4.5 nM. Mass spectrometry analysis was performed along with molecular dynamics simulation to obtain an insight into how tNSP3 binds to the N protein. The identified epitope peptides are localized within the RNA-binding domain and C terminus of the N protein. Hence, we confirmed the performance of this aptamer as an analytical tool for COVID-19 diagnosis.

2.
Chemistry (Weinheim an der Bergstrasse, Germany) ; 28(12), 2022.
Article in English | EuropePMC | ID: covidwho-1836892

ABSTRACT

Digital drug design reveals DNA aptamers binding SARS‐CoV‐2: A hybrid in silico et vitro approach, structure and interaction‐based drug design, has been developed to create highly specific DNA aptamers for the receptor‐binding domain of the SARS‐CoV‐2 spike protein. The structure and binding affinity of the aptamers were validated by small‐angle X‐ray scattering, flow cytometry, and fluorescence polarization. This approach offers a blueprint for the straightforward design of targeting molecules for new pathogens and emerging variants. More information can be found in the Research Article by Y. Alexeev, M. V. Berezovski, A. S. Kichkailo, et al. (DOI: 10.1002/chem.202104481).

3.
Chemistry ; 28(12): e202104481, 2022 Feb 24.
Article in English | MEDLINE | ID: covidwho-1620111

ABSTRACT

Aptamer selection against novel infections is a complicated and time-consuming approach. Synergy can be achieved by using computational methods together with experimental procedures. This study aims to develop a reliable methodology for a rational aptamer in silico et vitro design. The new approach combines multiple steps: (1) Molecular design, based on screening in a DNA aptamer library and directed mutagenesis to fit the protein tertiary structure; (2) 3D molecular modeling of the target; (3) Molecular docking of an aptamer with the protein; (4) Molecular dynamics (MD) simulations of the complexes; (5) Quantum-mechanical (QM) evaluation of the interactions between aptamer and target with further analysis; (6) Experimental verification at each cycle for structure and binding affinity by using small-angle X-ray scattering, cytometry, and fluorescence polarization. By using a new iterative design procedure, structure- and interaction-based drug design (SIBDD), a highly specific aptamer to the receptor-binding domain of the SARS-CoV-2 spike protein, was developed and validated. The SIBDD approach enhances speed of the high-affinity aptamers development from scratch, using a target protein structure. The method could be used to improve existing aptamers for stronger binding. This approach brings to an advanced level the development of novel affinity probes, functional nucleic acids. It offers a blueprint for the straightforward design of targeting molecules for new pathogen agents and emerging variants.


Subject(s)
Aptamers, Nucleotide , COVID-19 , Aptamers, Nucleotide/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , SELEX Aptamer Technique , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL